lttng-ust — LTTng user space tracing
#include <lttng/tracepoint.h>
#defineLTTNG_UST_TP_ARGS
(args…) #defineLTTNG_UST_TP_ENUM_VALUES
(values…) #defineLTTNG_UST_TP_FIELDS
(fields…) #defineLTTNG_UST_TRACEPOINT_ENUM
(prov_name, enum_name, mappings) #defineLTTNG_UST_TRACEPOINT_EVENT
(prov_name, t_name, args, fields) #defineLTTNG_UST_TRACEPOINT_EVENT_CLASS
(cls_prov_name, cls_name, args, fields) #defineLTTNG_UST_TRACEPOINT_EVENT_INSTANCE
(cls_prov_name, cls_name, inst_prov_name, t_name, args) #defineLTTNG_UST_TRACEPOINT_LOGLEVEL
(prov_name, t_name, level) #define lttng_ust_do_tracepoint(prov_name, t_name, …) #define lttng_ust_field_array(int_type, field_name, expr, count) #define lttng_ust_field_array_nowrite(int_type, field_name, expr, count) #define lttng_ust_field_array_hex(int_type, field_name, expr, count) #define lttng_ust_field_array_nowrite_hex(int_type, field_name, expr, count) #define lttng_ust_field_array_network(int_type, field_name, expr, count) #define lttng_ust_field_array_network_nowrite(int_type, field_name, expr, count) #define lttng_ust_field_array_network_hex(int_type, field_name, expr, count) #define lttng_ust_field_array_network_nowrite_hex(int_type, field_name, expr, count) #define lttng_ust_field_array_text(char, field_name, expr, count) #define lttng_ust_field_array_text_nowrite(char, field_name, expr, count) #define lttng_ust_field_enum(prov_name, enum_name, int_type, field_name, expr) #define lttng_ust_field_enum_nowrite(prov_name, enum_name, int_type, field_name, expr) #define lttng_ust_field_enum_value(label, value) #define lttng_ust_field_enum_range(label, start, end) #define lttng_ust_field_float(float_type, field_name, expr) #define lttng_ust_field_float_nowrite(float_type, field_name, expr) #define lttng_ust_field_integer(int_type, field_name, expr) #define lttng_ust_field_integer_hex(int_type, field_name, expr) #define lttng_ust_field_integer_network(int_type, field_name, expr) #define lttng_ust_field_integer_network_hex(int_type, field_name, expr) #define lttng_ust_field_integer_nowrite(int_type, field_name, expr) #define lttng_ust_field_sequence(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_nowrite(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_hex(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_nowrite_hex(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_network(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_network_nowrite(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_network_hex(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_network_nowrite_hex(int_type, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_text(char, field_name, expr, len_type, len_expr) #define lttng_ust_field_sequence_text_nowrite(char, field_name, expr, len_type, len_expr) #define lttng_ust_field_string(field_name, expr) #define lttng_ust_field_string_nowrite(field_name, expr) #define lttng_ust_tracepoint(prov_name, t_name, …) #define lttng_ust_tracepoint_enabled(prov_name, t_name)
Link with, following this manual page:
-llttng-ust -ldl
If you define _LGPL_SOURCE
before including
<lttng/tracepoint.h>
(directly or indirectly): -llttng-ust-common
The Linux Trace Toolkit: next generation is an open source software package used for correlated tracing of the Linux kernel, user applications, and user libraries.
LTTng-UST is the user space tracing component of the LTTng project. It
is a port to user space of the low-overhead tracing capabilities of the
LTTng Linux kernel tracer. The liblttng-ust
library is used to trace
user applications and libraries.
Note:This man page is about the liblttng-ust
library. The LTTng-UST
project also provides Java and Python packages to trace applications
written in those languages. How to instrument and trace Java and Python
applications is documented in
the online LTTng documentation.
There are three ways to use liblttng-ust
:
Using the lttng_ust_tracef(3) API, which is similar to printf(3).
Using the lttng_ust_tracelog(3) API, which is lttng_ust_tracef(3) with a log level parameter.
Defining your own tracepoints. See the Creating a tracepoint provider section below.
Since LTTng-UST 2.13, the LTTNG_UST_COMPAT_API_VERSION
definition
controls which LTTng-UST APIs are available (compiled):
All APIs are available.
N
(0 or positive integer)
API version N
, and all the following existing APIs, are
available. Previous APIs are not available (not compiled).
The following table shows the mapping from LTTng-UST versions (up to LTTng-UST 2.14) to available API versions:
LTTng-UST version | Available API versions |
---|---|
2.0 to 2.12 | 0 |
2.13 | 0 and 1 |
This manual page only documents version 1 of the API.
If you wish to have access to version 0 of the API (for example,
the tracepoint()
, ctf_integer()
, and TRACEPOINT_EVENT()
macros),
then either don’t define LTTNG_UST_COMPAT_API_VERSION
, or define it to
0
before including any LTTng-UST header.
Creating a tracepoint provider is the first step of using
liblttng-ust
. The next steps are:
Instrumenting your application with lttng_ust_tracepoint()
calls
Building your application with LTTng-UST support, either statically or dynamically.
A tracepoint provider is a compiled object containing the event probes corresponding to your custom tracepoint definitions. A tracepoint provider contains the code to get the size of an event and to serialize it, amongst other things.
To create a tracepoint provider, start with the following tracepoint provider header template:
#undef LTTNG_UST_TRACEPOINT_PROVIDER #define LTTNG_UST_TRACEPOINT_PROVIDER my_provider #undef LTTNG_UST_TRACEPOINT_INCLUDE #define LTTNG_UST_TRACEPOINT_INCLUDE "./tp.h" #if !defined(_TP_H) || \ defined(LTTNG_UST_TRACEPOINT_HEADER_MULTI_READ) #define _TP_H #include <lttng/tracepoint.h> /* * LTTNG_UST_TRACEPOINT_EVENT(), LTTNG_UST_TRACEPOINT_EVENT_CLASS(), * LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(), * LTTNG_UST_TRACEPOINT_LOGLEVEL(), and `LTTNG_UST_TRACEPOINT_ENUM()` * are used here. */ #endif /* _TP_H */ #include <lttng/tracepoint-event.h>
In this template, the tracepoint provider is named my_provider
(LTTNG_UST_TRACEPOINT_PROVIDER
definition). The file needs to bear the
name of the LTTNG_UST_TRACEPOINT_INCLUDE
definition (tp.h
in this case).
Between #include <lttng/tracepoint.h>
and #endif
go
the invocations of the LTTNG_UST_TRACEPOINT_EVENT()
,
LTTNG_UST_TRACEPOINT_EVENT_CLASS()
,
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE()
,
LTTNG_UST_TRACEPOINT_LOGLEVEL()
, and
LTTNG_UST_TRACEPOINT_ENUM()
macros.
Note:You can avoid writing the prologue and epilogue boilerplate in the template file above by using the lttng-gen-tp(1) tool shipped with LTTng-UST.
The tracepoint provider header file needs to be included in a source file which looks like this:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES #include "tp.h"
Together, those two files (let’s call them tp.h
and tp.c
) form the
tracepoint provider sources, ready to be compiled.
You can create multiple tracepoint providers to be used in a single application, but each one must have its own header file.
The LTTNG_UST_TRACEPOINT_EVENT()
usage section below
shows how to use the LTTNG_UST_TRACEPOINT_EVENT()
macro to define the actual
tracepoints in the tracepoint provider header file.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_EVENT()
usageThe LTTNG_UST_TRACEPOINT_EVENT()
macro is used in a template provider
header file (see the Creating a tracepoint provider
section above) to define LTTng-UST tracepoints.
The LTTNG_UST_TRACEPOINT_EVENT()
usage template is as follows:
LTTNG_UST_TRACEPOINT_EVENT( /* Tracepoint provider name */ my_provider, /* Tracepoint/event name */ my_tracepoint, /* List of tracepoint arguments (input) */ LTTNG_UST_TP_ARGS( ... ), /* List of fields of eventual event (output) */ LTTNG_UST_TP_FIELDS( ... ) )
The LTTNG_UST_TP_ARGS()
macro contains the input arguments of the tracepoint.
Those arguments can be used in the argument expressions of the output
fields defined in LTTNG_UST_TP_FIELDS()
.
The format of the LTTNG_UST_TP_ARGS()
parameters is: C type, then argument name;
repeat as needed, up to ten times. For example:
LTTNG_UST_TP_ARGS( int, my_int, const char *, my_string, FILE *, my_file, double, my_float, struct my_data *, my_data )
The LTTNG_UST_TP_FIELDS()
macro contains the output fields of the tracepoint,
that is, the actual data that can be recorded in the payload of an event
emitted by this tracepoint.
The LTTNG_UST_TP_FIELDS()
macro contains a list of
lttng_ust_field_*()
macros not separated by commas.
The available macros are documented in the
Available lttng_ust_field_*()
field type macros
section below.
This section documents the available lttng_ust_field_*()
macros that
can be inserted in the LTTNG_UST_TP_FIELDS()
macro of the
LTTNG_UST_TRACEPOINT_EVENT()
macro.
Standard integer, displayed in base 10:
lttng_ust_field_integer(int_type, field_name, expr) lttng_ust_field_integer_nowrite(int_type, field_name, expr)
Standard integer, displayed in base 16:
lttng_ust_field_integer_hex(int_type, field_name, expr)
Integer in network byte order (big endian), displayed in base 10:
lttng_ust_field_integer_network(int_type, field_name, expr)
Integer in network byte order, displayed in base 16:
lttng_ust_field_integer_network_hex(int_type, field_name, expr)
Floating point number:
lttng_ust_field_float(float_type, field_name, expr) lttng_ust_field_float_nowrite(float_type, field_name, expr)
Null-terminated string:
lttng_ust_field_string(field_name, expr) lttng_ust_field_string_nowrite(field_name, expr)
Statically-sized array of integers (_hex
versions displayed in
hexadecimal, _network
versions in network byte order):
lttng_ust_field_array(int_type, field_name, expr, count) lttng_ust_field_array_nowrite(int_type, field_name, expr, count) lttng_ust_field_array_hex(int_type, field_name, expr, count) lttng_ust_field_array_nowrite_hex(int_type, field_name, expr, count) lttng_ust_field_array_network(int_type, field_name, expr, count) lttng_ust_field_array_network_nowrite(int_type, field_name, expr, count) lttng_ust_field_array_network_hex(int_type, field_name, expr, count) lttng_ust_field_array_network_nowrite_hex(int_type, field_name, expr, count)
Statically-sized array, printed as text; no need to be null-terminated:
lttng_ust_field_array_text(char, field_name, expr, count) lttng_ust_field_array_text_nowrite(char, field_name, expr, count)
Dynamically-sized array of integers (_hex
versions displayed in
hexadecimal, _network
versions in network byte order):
lttng_ust_field_sequence(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_nowrite(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_hex(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_nowrite_hex(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_network(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_network_nowrite(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_network_hex(int_type, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_network_nowrite_hex(int_type, field_name, expr, len_type, len_expr)
Dynamically-sized array, displayed as text; no need to be null-terminated:
lttng_ust_field_sequence_text(char, field_name, expr, len_type, len_expr) lttng_ust_field_sequence_text_nowrite(char, field_name, expr, len_type, len_expr)
Enumeration. The enumeration field must be defined before using this
macro with the LTTNG_UST_TRACEPOINT_ENUM()
macro. See the
LTTNG_UST_TRACEPOINT_ENUM()
usage section for more
information.
lttng_ust_field_enum(prov_name, enum_name, int_type, field_name, expr) lttng_ust_field_enum_nowrite(prov_name, enum_name, int_type, field_name, expr)
The parameters are:
Number of elements in array/sequence. This must be known at compile time.
Name of an enumeration field previously defined with the
LTTNG_UST_TRACEPOINT_ENUM()
macro. See the
LTTNG_UST_TRACEPOINT_ENUM()
usage section for more
information.
C expression resulting in the field value. This expression can
use one or more arguments passed to the tracepoint. The arguments
of a given tracepoint are defined in the LTTNG_UST_TP_ARGS()
macro (see
the Creating a tracepoint provider section above).
Event field name (C identifier syntax, not a literal string).
Float C type (float
or double
). The size of this type determines
the size of the floating point number field.
Integer C type. The size of this type determines the size of the integer/enumeration field.
C expression resulting in the sequence length. This expression can use one or more arguments passed to the tracepoint.
Unsigned integer C type of sequence length.
Tracepoint provider name. This must be the same as the tracepoint provider name used in a previous field definition.
The _nowrite
versions omit themselves from the recorded trace, but are
otherwise identical. Their primary purpose is to make some of the
event context available to the event filters without having to commit
the data to sub-buffers. See lttng-enable-event(1) to learn more
about dynamic event filtering.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_ENUM()
usageAn enumeration field is a list of mappings between an integers, or a range of integers, and strings (sometimes called labels or enumerators). Enumeration fields can be used to have a more compact trace when the possible values for a field are limited.
An enumeration field is defined with the LTTNG_UST_TRACEPOINT_ENUM()
macro:
LTTNG_UST_TRACEPOINT_ENUM( /* Tracepoint provider name */ my_provider, /* Enumeration name (unique in the whole tracepoint provider) */ my_enum, /* Enumeration mappings */ LTTNG_UST_TP_ENUM_VALUES( ... ) )
LTTNG_UST_TP_ENUM_VALUES()
contains a list of enumeration mappings,
not separated by commas. Two macros can be used in the
LTTNG_UST_TP_ENUM_VALUES()
: lttng_ust_field_enum_value()
and
lttng_ust_field_enum_range()
.
lttng_ust_field_enum_value()
is a single value mapping:
lttng_ust_field_enum_value(label, value)
This macro maps the given label string to the value value.
lttng_ust_field_enum_range()
is a range mapping:
lttng_ust_field_enum_range(label, start, end)
This macro maps the given label string to the range of integers from start to end, inclusively. Range mappings may overlap, but the behaviour is implementation-defined: each trace reader handles overlapping ranges as it wishes.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_EVENT_CLASS()
usageA tracepoint class is a class of tracepoints sharing the same field types and names. A tracepoint instance is one instance of such a declared tracepoint class, with its own event name.
LTTng-UST creates one event serialization function per tracepoint class.
Using LTTNG_UST_TRACEPOINT_EVENT()
creates one tracepoint class per
tracepoint definition, whereas using
LTTNG_UST_TRACEPOINT_EVENT_CLASS()
and
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE()
creates one tracepoint class,
and one or more tracepoint instances of this class. In other words, many
tracepoints can reuse the same serialization code. Reusing the same
code, when possible, can reduce cache pollution, thus improve
performance.
The LTTNG_UST_TRACEPOINT_EVENT_CLASS()
macro accepts the same
parameters as the LTTNG_UST_TRACEPOINT_EVENT()
macro, except that
instead of an event name, its second parameter is the tracepoint class
name:
#define LTTNG_UST_TRACEPOINT_PROVIDER my_provider /* ... */ LTTNG_UST_TRACEPOINT_EVENT_CLASS( /* Tracepoint class provider name */ my_provider, /* Tracepoint class name */ my_tracepoint_class, /* List of tracepoint arguments (input) */ LTTNG_UST_TP_ARGS( ... ), /* List of fields of eventual event (output) */ LTTNG_UST_TP_FIELDS( ... ) )
Once the tracepoint class is defined, you can create as many tracepoint instances as needed:
#define LTTNG_UST_TRACEPOINT_PROVIDER natality /* ... */ LTTNG_UST_TRACEPOINT_EVENT_INSTANCE( /* Name of the tracepoint class provider */ my_provider, /* Tracepoint class name */ my_tracepoint_class, /* Name of the local (instance) tracepoint provider */ natality, /* Tracepoint/event name */ my_tracepoint, /* List of tracepoint arguments (input) */ LTTNG_UST_TP_ARGS( ... ) )
As you can see, the LTTNG_UST_TRACEPOINT_EVENT_INSTANCE()
does not
contain the LTTNG_UST_TP_FIELDS()
macro, because they are defined at
the LTTNG_UST_TRACEPOINT_EVENT_CLASS()
level.
Note that the LTTNG_UST_TRACEPOINT_EVENT_INSTANCE()
macro requires two
provider names:
The name of the tracepoint class provider (my_provider
in the
example above).
This is the same as the first argument of the
LTTNG_UST_TRACEPOINT_EVENT_CLASS()
expansion to refer to.
The name of the local, or instance, provider (natality
in the
example above).
This is the provider name which becomes the prefix part of the name of the events which such a tracepoint creates.
The two provider names may be different if the tracepoint class and the tracepoint instance macros are in two different translation units.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_LOGLEVEL()
usageOptionally, a log level can be assigned to a defined tracepoint.
Assigning different levels of severity to tracepoints can be useful:
when controlling tracing sessions, you can choose to only enable
events falling into a specific log level range using the
--loglevel
and --loglevel-only
options of the
lttng-enable-event(1) command.
Log levels are assigned to tracepoints that are already defined using
the LTTNG_UST_TRACEPOINT_LOGLEVEL()
macro. The latter must be used
after having used LTTNG_UST_TRACEPOINT_EVENT()
or
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE()
for a given tracepoint. The
LTTNG_UST_TRACEPOINT_LOGLEVEL()
macro is used as follows:
LTTNG_UST_TRACEPOINT_LOGLEVEL( /* Tracepoint provider name */ my_provider, /* Tracepoint/event name */ my_tracepoint, /* Log level */ LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO )
The available log level definitions are:
LTTNG_UST_TRACEPOINT_LOGLEVEL_EMERG
System is unusable.
LTTNG_UST_TRACEPOINT_LOGLEVEL_ALERT
Action must be taken immediately.
LTTNG_UST_TRACEPOINT_LOGLEVEL_CRIT
Critical conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_ERR
Error conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_WARNING
Warning conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_NOTICE
Normal, but significant, condition.
LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO
Informational message.
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_SYSTEM
Debug information with system-level scope (set of programs).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_PROGRAM
Debug information with program-level scope (set of processes).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_PROCESS
Debug information with process-level scope (set of modules).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_MODULE
Debug information with module (executable/library) scope (set of units).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_UNIT
Debug information with compilation unit scope (set of functions).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_FUNCTION
Debug information with function-level scope.
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_LINE
Debug information with line-level scope (default log level).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG
Debug-level message.
See the EXAMPLE section below for a complete example.
Once the tracepoint provider is created (see the
Creating a tracepoint provider section above), you can
instrument your application with the defined tracepoints thanks to the
lttng_ust_tracepoint()
macro:
#define lttng_ust_tracepoint(prov_name, t_name, …)
With:
Tracepoint provider name.
Tracepoint/event name.
...
Tracepoint arguments, if any.
Make sure to include the tracepoint provider header file anywhere you
use lttng_ust_tracepoint()
for this provider.
Note:Even though LTTng-UST supports lttng_ust_tracepoint()
call site
duplicates having the same provider and tracepoint names, it is
recommended to use a provider/tracepoint name pair only once within the
application source code to help map events back to their call sites when
analyzing the trace.
Sometimes, arguments to the tracepoint are expensive to compute (take
call stack, for example). To avoid the computation when the tracepoint
is disabled, you can use the lttng_ust_tracepoint_enabled()
and
lttng_ust_do_tracepoint()
macros:
#define lttng_ust_tracepoint_enabled(prov_name, t_name) #define lttng_ust_do_tracepoint(prov_name, t_name, …)
lttng_ust_tracepoint_enabled()
returns a non-zero value if the tracepoint
named t_name from the provider named prov_name is enabled at
run time.
lttng_ust_do_tracepoint()
is like lttng_ust_tracepoint()
, except that it doesn’t check
if the tracepoint is enabled. Using lttng_ust_tracepoint()
with
lttng_ust_tracepoint_enabled()
is dangerous since lttng_ust_tracepoint()
also contains
the lttng_ust_tracepoint_enabled()
check, thus a race condition is possible
in this situation:
if (lttng_ust_tracepoint_enabled(my_provider, my_tracepoint)) { stuff = prepare_stuff(); } lttng_ust_tracepoint(my_provider, my_tracepoint, stuff);
If the tracepoint is enabled after the condition, then stuff
is not
prepared: the emitted event will either contain wrong data, or the
whole application could crash (segmentation fault, for example).
Note:Neither lttng_ust_tracepoint_enabled()
nor
lttng_ust_do_tracepoint()
have a STAP_PROBEV()
call, so if you need
it, you should emit this call yourself.
If one of the following is true:
You compile your C++ application with GCC ≤ 4.8.
You compile your C/C++ application with a C++ compiler and
define LTTNG_UST_ALLOCATE_COMPOUND_LITERAL_ON_HEAP
.
Then LTTng won’t trace:
C constructors and destructors in the application itself or in statically linked archives.
Some C++ constructors and destructors in the application itself or in statically linked archives.
In this case, which exact C++ constructors and destructors won’t be traced depends on the initialization order within each translation unit and across the entire program when all translation units are linked together.
With the static linking method, compiled tracepoint providers are copied into the target application.
Define LTTNG_UST_TRACEPOINT_DEFINE
definition below the
LTTNG_UST_TRACEPOINT_CREATE_PROBES
definition in the tracepoint
provider source:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES #define LTTNG_UST_TRACEPOINT_DEFINE #include "tp.h"
Create the tracepoint provider object file:
$
cc -c -I. tp.c
Note:Although an application instrumented with LTTng-UST tracepoints can be compiled with a C++ compiler, tracepoint probes should be compiled with a C compiler.
At this point, you can archive this tracepoint provider object file, possibly with other object files of your application or with other tracepoint provider object files, as a static library:
$
ar rc tp.a tp.o
Using a static library does have the advantage of centralising the tracepoint providers objects so they can be shared between multiple applications. This way, when the tracepoint provider is modified, the source code changes don’t have to be patched into the source code tree of each application. The applications need to be relinked after each change, but need not to be otherwise recompiled (unless the API of the tracepoint provider changes).
Then, link your application with this object file (or with the static
library containing it) and with liblttng-ust
and libdl
(libc
on a
BSD system):
$
cc -o app tp.o app.o -llttng-ust -ldl
The second approach to package the tracepoint provider is to use the dynamic loader: the library and its member functions are explicitly sought, loaded at run time.
In this scenario, the tracepoint provider is compiled as a shared object.
The process to create the tracepoint provider shared object is pretty much the same as the static linking method, except that:
Since the tracepoint provider is not part of the application,
LTTNG_UST_TRACEPOINT_DEFINE
must be defined, for each tracepoint
provider, in exactly one source file of the application
LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE
must be defined next to
LTTNG_UST_TRACEPOINT_DEFINE
Regarding LTTNG_UST_TRACEPOINT_DEFINE
and
LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE
, the recommended practice
is to use a separate C source file in your application to define them,
then include the tracepoint provider header files afterwards. For
example, as tp-define.c
:
#define LTTNG_UST_TRACEPOINT_DEFINE #define LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE #include "tp.h"
The tracepoint provider object file used to create the shared library is
built like it is using the static linking method, but with the
-fpic
option:
$
cc -c -fpic -I. tp.c
It is then linked as a shared library like this:
$
cc -shared -Wl,--no-as-needed -o tp.so tp.o -llttng-ust
This tracepoint provider shared object isn’t linked with the user application: it must be loaded manually. This is why the application is built with no mention of this tracepoint provider, but still needs libdl:
$
cc -o app app.o tp-define.o -ldl
There are two ways to dynamically load the tracepoint provider shared object:
Load it manually from the application using dlopen(3)
Make the dynamic loader load it with the LD_PRELOAD
environment variable (see ld.so(8))
If the application does not dynamically load the tracepoint provider shared object using one of the methods above, tracing is disabled for this application, and the events are not listed in the output of lttng-list(1).
Note that it is not safe to use dlclose(3) on a tracepoint provider shared object that is being actively used for tracing, due to a lack of reference counting from LTTng-UST to the shared object.
For example, statically linking a tracepoint provider to a shared object which is to be dynamically loaded by an application (a plugin, for example) is not safe: the shared object, which contains the tracepoint provider, could be dynamically closed (dlclose(3)) at any time by the application.
To instrument a shared object, either:
Statically link the tracepoint provider to the application, or
Build the tracepoint provider as a shared object (following the
procedure shown in this section), and preload it when tracing is
needed using the LD_PRELOAD
environment variable.
Some extra care is needed when using liblttng-ust
with daemon
applications that call fork(2), clone(2), or BSD’s rfork(2)
without a following exec(3) family system call. The library
liblttng-ust-fork.so
needs to be preloaded before starting the
application with the LD_PRELOAD
environment variable (see
ld.so(8)).
To use liblttng-ust
with a daemon application which closes file
descriptors that were not opened by it, preload the liblttng-ust-fd.so
library before you start the application. Typical use cases include
daemons closing all file descriptors after fork(2), and buggy
applications doing “double-closes”.
Context information can be prepended by the LTTng-UST tracer before each event, or before specific events.
Context fields can be added to specific channels using lttng-add-context(1).
The following context fields are supported by LTTng-UST:
cpu_id
CPU ID.
Note:This context field is always enabled, and it cannot be added with lttng-add-context(1). Its main purpose is to be used for dynamic event filtering. See lttng-enable-event(1) for more information about event filtering.
ip
Instruction pointer: enables recording the exact address from which an event was emitted. This context field can be used to reverse-lookup the source location that caused the event to be emitted.
pthread_id
POSIX thread identifier.
Can be used on architectures where pthread_t
maps nicely to an
unsigned long
type.
procname
Thread name, as set by exec(3) or prctl(2). It is recommended that programs set their thread name with prctl(2) before hitting the first tracepoint for that thread.
vpid
Virtual process ID: process ID as seen from the point of view of the current process ID namespace (see pid_namespaces(7)).
vtid
Virtual thread ID: thread ID as seen from the point of view of the current process ID namespace (see pid_namespaces(7)).
perf:thread:COUNTER
perf counter named COUNTER
. Use lttng add-context --list
to
list the available perf counters.
Only available on IA-32 and x86-64 architectures.
perf:thread:raw:rN:NAME
perf counter with raw ID N
and custom name NAME
. See
lttng-add-context(1) for more details.
cgroup_ns
Inode number of the current control group namespace (see cgroup_namespaces(7)) in the proc file system.
ipc_ns
Inode number of the current IPC namespace (see ipc_namespaces(7)) in the proc file system.
mnt_ns
Inode number of the current mount point namespace (see mount_namespaces(7)) in the proc file system.
net_ns
Inode number of the current network namespace (see network_namespaces(7)) in the proc file system.
pid_ns
Inode number of the current process ID namespace (see pid_namespaces(7)) in the proc file system.
time_ns
Inode number of the current clock namespace (see time_namespaces(7)) in the proc file system.
user_ns
Inode number of the current user namespace (see user_namespaces(7)) in the proc file system.
uts_ns
Inode number of the current UTS namespace (see uts_namespaces(7)) in the proc file system.
vuid
Virtual real user ID: real user ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
vgid
Virtual real group ID: real group ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
veuid
Virtual effective user ID: effective user ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
vegid
Virtual effective group ID: effective group ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
vsuid
Virtual saved set-user ID: saved set-user ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
vsgid
Virtual saved set-group ID: saved set-group ID as seen from the point of view of the current user namespace (see user_namespaces(7)).
If an application that uses liblttng-ust
becomes part of a tracing
session, information about its currently loaded shared objects, their
build IDs, and their debug link information are emitted as events
by the tracer.
The following LTTng-UST state dump events exist and must be enabled to record application state dumps. Note that, during the state dump phase, LTTng-UST can also emit shared library load/unload events (see Shared library load/unload tracking below).
lttng_ust_statedump:start
Emitted when the state dump begins.
This event has no fields.
lttng_ust_statedump:end
Emitted when the state dump ends. Once this event is emitted, it is guaranteed that, for a given process, the state dump is complete.
This event has no fields.
lttng_ust_statedump:bin_info
Emitted when information about a currently loaded executable or shared object is found.
Fields:
Field name | Description |
---|---|
| Base address of loaded executable. |
| Size of loaded executable in memory. |
| Path to loaded executable file. |
| Whether or not the executable is position-independent code. |
| Whether or not the executable has a build ID. If this field is 1, you
can expect that an |
| Whether or not the executable has debug link information. If this field
is 1, you can expect that an |
lttng_ust_statedump:build_id
Emitted when a build ID is found in a currently loaded shared library. See Debugging Information in Separate Files for more information about build IDs.
Fields:
Field name | Description |
---|---|
| Base address of loaded library. |
| Build ID. |
lttng_ust_statedump:debug_link
Emitted when debug link information is found in a currently loaded shared library. See Debugging Information in Separate Files for more information about debug links.
Fields:
Field name | Description |
---|---|
| Base address of loaded library. |
| CRC of debug link file. |
| Debug link file name. |
lttng_ust_statedump:procname
The process procname at process start.
Fields:
Field name | Description |
---|---|
| The process name. |
The LTTng-UST state dump and the LTTng-UST helper library to instrument the dynamic linker (see liblttng-ust-dl(3)) can emit shared library load/unload tracking events.
The following shared library load/unload tracking events exist and must be enabled to track the loading and unloading of shared libraries:
lttng_ust_lib:load
Emitted when a shared library (shared object) is loaded.
Fields:
Field name | Description |
---|---|
| Base address of loaded library. |
| Size of loaded library in memory. |
| Path to loaded library file. |
| Whether or not the library has a build ID. If this field is 1, you
can expect that an |
| Whether or not the library has debug link information. If this field
is 1, you can expect that an |
lttng_ust_lib:unload
Emitted when a shared library (shared object) is unloaded.
Fields:
Field name | Description |
---|---|
| Base address of unloaded library. |
lttng_ust_lib:build_id
Emitted when a build ID is found in a loaded shared library (shared object). See Debugging Information in Separate Files for more information about build IDs.
Fields:
Field name | Description |
---|---|
| Base address of loaded library. |
| Build ID. |
lttng_ust_lib:debug_link
Emitted when debug link information is found in a loaded shared library (shared object). See Debugging Information in Separate Files for more information about debug links.
Fields:
Field name | Description |
---|---|
| Base address of loaded library. |
| CRC of debug link file. |
| Debug link file name. |
To detect if liblttng-ust
is loaded from an application:
Define the lttng_ust_loaded
weak symbol globally:
int lttng_ust_loaded __attribute__((weak));
This weak symbol is set by the constructor of liblttng-ust
.
Test lttng_ust_loaded
where needed:
/* ... */ if (lttng_ust_loaded) { /* LTTng-UST is loaded */ } else { /* LTTng-UST is NOT loaded */ } /* ... */
Note:A few examples are available in the
doc/examples
directory of LTTng-UST’s source tree.
This example shows all the features documented in the previous sections. The static linking method is chosen here to link the application with the tracepoint provider.
You can compile the source files and link them together statically like this:
$ $ $
cc -c -I. tp.c cc -c app.c cc -o app tp.o app.o -llttng-ust -ldl
Using the lttng(1) tool, create an LTTng tracing session, enable all the events of this tracepoint provider, and start tracing:
$ $ $
lttng create my-session lttng enable-event --userspace 'my_provider:*' lttng start
You may also enable specific events:
$ $
lttng enable-event --userspace my_provider:big_event lttng enable-event --userspace my_provider:event_instance2
Run the application:
$
./app some arguments
Stop the current tracing session and inspect the recorded events:
$ $
lttng stop lttng view
tp.h
:
#undef LTTNG_UST_TRACEPOINT_PROVIDER #define LTTNG_UST_TRACEPOINT_PROVIDER my_provider #undef LTTNG_USTTRACEPOINT_INCLUDE #define LTTNG_USTTRACEPOINT_INCLUDE "./tp.h" #if !defined(_TP_H) || \ defined(LTTNG_UST_TRACEPOINT_HEADER_MULTI_READ) #define _TP_H #include <lttng/tracepoint.h> #include <stdio.h> #include "app.h" LTTNG_UST_TRACEPOINT_EVENT( my_provider, simple_event, LTTNG_UST_TP_ARGS( int, my_integer_arg, const char *, my_string_arg ), LTTNG_UST_TP_FIELDS( lttng_ust_field_string(argc, my_string_arg) lttng_ust_field_integer(int, argv, my_integer_arg) ) ) LTTNG_UST_TRACEPOINT_ENUM( my_provider, my_enum, LTTNG_UST_TP_ENUM_VALUES( lttng_ust_field_enum_value("ZERO", 0) lttng_ust_field_enum_value("ONE", 1) lttng_ust_field_enum_value("TWO", 2) lttng_ust_field_enum_range("A RANGE", 52, 125) lttng_ust_field_enum_value("ONE THOUSAND", 1000) ) ) LTTNG_UST_TRACEPOINT_EVENT( my_provider, big_event, LTTNG_UST_TP_ARGS( int, my_integer_arg, const char *, my_string_arg, FILE *, stream, double, flt_arg, int *, array_arg ), LTTNG_UST_TP_FIELDS( lttng_ust_field_integer(int, int_field1, my_integer_arg * 2) lttng_ust_field_integer_hex(long int, stream_pos, ftell(stream)) lttng_ust_field_float(double, float_field, flt_arg) lttng_ust_field_string(string_field, my_string_arg) lttng_ust_field_array(int, array_field, array_arg, 7) lttng_ust_field_array_text(char, array_text_field, array_arg, 5) lttng_ust_field_sequence(int, seq_field, array_arg, unsigned int, my_integer_arg / 10) lttng_ust_field_sequence_text(char, seq_text_field, array_arg, unsigned int, my_integer_arg / 5) lttng_ust_field_enum(my_provider, my_enum, int, enum_field, array_arg[1]) ) ) LTTNG_UST_TRACEPOINT_LOGLEVEL(my_provider, big_event, LTTNG_UST_TRACEPOINT_LOGLEVEL_WARNING) LTTNG_UST_TRACEPOINT_EVENT_CLASS( my_provider, my_tracepoint_class, LTTNG_UST_TP_ARGS( int, my_integer_arg, struct app_struct *, app_struct_arg ), LTTNG_UST_TP_FIELDS( lttng_ust_field_integer(int, a, my_integer_arg) lttng_ust_field_integer(unsigned long, b, app_struct_arg->b) lttng_ust_field_string(c, app_struct_arg->c) ) ) LTTNG_UST_TRACEPOINT_EVENT_INSTANCE( my_provider, my_tracepoint_class, my_provider, event_instance1, LTTNG_UST_TP_ARGS( int, my_integer_arg, struct app_struct *, app_struct_arg ) ) LTTNG_UST_TRACEPOINT_EVENT_INSTANCE( my_provider, my_tracepoint_class, my_provider, event_instance2, LTTNG_UST_TP_ARGS( int, my_integer_arg, struct app_struct *, app_struct_arg ) ) LTTNG_UST_TRACEPOINT_LOGLEVEL(my_provider, event_instance2, LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO) LTTNG_UST_TRACEPOINT_EVENT_INSTANCE( my_provider, my_tracepoint_class, my_provider, event_instance3, LTTNG_UST_TP_ARGS( int, my_integer_arg, struct app_struct *, app_struct_arg ) ) #endif /* _TP_H */ #include <lttng/tracepoint-event.h>
tp.c
:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES #define LTTNG_UST_TRACEPOINT_DEFINE #include "tp.h"
app.h
:
#ifndef _APP_H #define _APP_H struct app_struct { unsigned long b; const char *c; double d; }; #endif /* _APP_H */
app.c
:
#include <stdlib.h> #include <stdio.h> #include "tp.h" #include "app.h" static int array_of_ints[] = { 100, -35, 1, 23, 14, -6, 28, 1001, -3000, }; int main(int argc, char* argv[]) { FILE *stream; struct app_struct app_struct; lttng_ust_tracepoint(my_provider, simple_event, argc, argv[0]); stream = fopen("/tmp/app.txt", "w"); if (!stream) { fprintf(stderr, "Error: Cannot open /tmp/app.txt for writing\n"); return EXIT_FAILURE; } if (fprintf(stream, "0123456789") != 10) { fclose(stream); fprintf(stderr, "Error: Cannot write to /tmp/app.txt\n"); return EXIT_FAILURE; } lttng_ust_tracepoint(my_provider, big_event, 35, "hello tracepoint", stream, -3.14, array_of_ints); fclose(stream); app_struct.b = argc; app_struct.c = "[the string]"; lttng_ust_tracepoint(my_provider, event_instance1, 23, &app_struct); app_struct.b = argc * 5; app_struct.c = "[other string]"; lttng_ust_tracepoint(my_provider, event_instance2, 17, &app_struct); app_struct.b = 23; app_struct.c = "nothing"; lttng_ust_tracepoint(my_provider, event_instance3, -52, &app_struct); return EXIT_SUCCESS; }
LTTNG_HOME
Alternative user’s home directory. This variable is useful when the user running the instrumented application has a non-writable home directory. This path is where Unix sockets for communication with the per-user session daemon are located.
LTTNG_UST_ABORT_ON_CRITICAL
If set, abort the instrumented application on a critical error message.
LTTNG_UST_ALLOW_BLOCKING
If set, allow the application to retry event tracing when there’s no space left for the event record in the sub-buffer, therefore effectively blocking the application until space is made available or the configured timeout is reached.
To allow an application to block during tracing, you also need to
specify a blocking timeout when you create a channel with the
--blocking-timeout
option of the lttng-enable-channel(1)
command.
This option can be useful in workloads generating very large trace data throughput, where blocking the application is an acceptable trade-off to prevent discarding event records.
Warning:Setting this environment variable may significantly affect application timings.
LTTNG_UST_APP_PATH
Path of the directory where to expect the LTTng session daemon to place the following files to receive instrumented application connection requests:
The application registration Unix socket.
The "wait" shared memory files to wake up instrumented applications that are waiting for a session daemon to start.
The agent port file.
This file contains the TCP port the agents must connect to in order to enable LTTng tracing.
This directory must exist when you start the application for LTTng tracing to be enabled.
When LTTNG_UST_APP_PATH
is set, liblttng-ust:
Only considers this path to connect to a session daemon.
Won’t connect to root and/or user session daemons as usual.
See the corresponding LTTNG_UST_CTL_PATH
environment variable of
lttng-sessiond(8).
LTTNG_UST_CLOCK_PLUGIN
Path to the shared object which acts as the clock override plugin.
An example of such a plugin can be found in the LTTng-UST
documentation under
examples/clock-override
.
LTTNG_UST_DEBUG
If set, enable the debug and error output of liblttng-ust
.
LTTNG_UST_GETCPU_PLUGIN
Path to the shared object which acts as the getcpu()
override
plugin. An example of such a plugin can be found in the LTTng-UST
documentation under
examples/getcpu-override
.
LTTNG_UST_MAP_POPULATE_POLICY
If set, override the policy used to populate shared memory pages within the application.
The possible values are:
none
(default)
Do not pre-populate any page: take minor faults on first access while tracing.
cpu_possible
Pre-populate pages for all possible CPUs in the system, as
shown in /sys/devices/system/cpu/possible
.
LTTNG_UST_REGISTER_TIMEOUT
Waiting time for the registration done session daemon command before proceeding to execute the main program (milliseconds).
The value 0
means do not wait. The value -1
means wait forever.
Setting this environment variable to 0
is recommended for applications
with time constraints on the process startup time.
Default: 3000.
LTTNG_UST_WITHOUT_BADDR_STATEDUMP
If set, prevents liblttng-ust
from performing a base address state
dump (see the LTTng-UST state dump section above).
LTTNG_UST_WITHOUT_PROCNAME_STATEDUMP
If set, prevents liblttng-ust
from performing a procname state
dump (see the LTTng-UST state dump section above).
If you encounter any issue or usability problem, please report it on the LTTng bug tracker.
Mailing list for support and
development: lttng-dev@lists.lttng.org
IRC channel: #lttng
on irc.oftc.net
This library is part of the LTTng-UST project.
This library is distributed under the
GNU Lesser
General Public License, version 2.1. See the
COPYING
file
for more details.
Thanks to Ericsson for funding this work, providing real-life use cases, and testing.
Special thanks to Michel Dagenais and the DORSAL laboratory at École Polytechnique de Montréal for the LTTng journey.